c^2=5128

Simple and best practice solution for c^2=5128 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c^2=5128 equation:



c^2=5128
We move all terms to the left:
c^2-(5128)=0
a = 1; b = 0; c = -5128;
Δ = b2-4ac
Δ = 02-4·1·(-5128)
Δ = 20512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20512}=\sqrt{16*1282}=\sqrt{16}*\sqrt{1282}=4\sqrt{1282}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1282}}{2*1}=\frac{0-4\sqrt{1282}}{2} =-\frac{4\sqrt{1282}}{2} =-2\sqrt{1282} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1282}}{2*1}=\frac{0+4\sqrt{1282}}{2} =\frac{4\sqrt{1282}}{2} =2\sqrt{1282} $

See similar equations:

| 9x²-125=0 | | c^2=2754 | | -2(7v+5)-6(v+2)=-2 | | x+0.6x=196 | | -14+7z=7 | | -14+7y=7 | | c^2=2 | | c^2=777 | | c^2=776 | | Z^1/2=9i | | Z^1/3=8i | | 4x²+10x=30 | | 7x-3(x-10)=4x+17-3x+19 | | 0,5333/x=8 | | Z^1/3=-8i | | X^2+100x+101=0 | | 49x+12.5=10 | | -6•(-1m-1)=-6 | | (60+x)×(40+x)=0 | | -2(3x-4)=5(2-x) | | 15-7x=8x-72 | | 0.1*x=3 | | 3(4m+6)−8=130 | | 25=y | | 5n−6=2n+15 | | 7m+4=4m+22 | | (17x+21)+123°=180 | | 18+2(5-x)=-17+45 | | 15/X=(2r)^2/r^2 | | (17x+21)=123° | | y=|-9+7| | | 4(-2x+4)+3x-1=0 |

Equations solver categories